Rabu, 31 Juli 2019

SIFAT KOLIGATIF LARUTAN

MOLARITAS  DAN FRAKSI MOL
     Dalam larutan, terdapat beberapa sifat zat yang hanya ditentukan oleh banyaknya partikel zat terlarut. Sifat ini disebut sebagai sifat koligatif larutan. Oleh karena sifat koligatif larutan ditentukan oleh banyaknya partikel zat terlarut, bab ini akan diawali dengan pembahasan mengenai konsentrasi larutan.

1. Molaritas (m)
  Pada pelajaran sebelumnya, kita menyatakan konsentrasi dengan persentase (%) dan molaritas (M). Dalam perhitungan molaritas, kuantitas larutan didasarkan pada volume. Anda tentu ingat, volume merupakan fungsi suhu (zat akan memuai ketika dipanaskan). Oleh karena sifat koligatif larutan dipengaruhi suhu, diperlukan suatu besaran yang tidak bergantung pada suhu. Besaran tersebut dinyatakan berdasarkan massa karena massa tidak bergantung pada suhu, baik dari kuantitas zat terlarut maupun pelarutnya. Untuk itu, digunakan molalitas yang menyatakan jumlah partikel zat terlarut (mol) setiap 1 kg pelarut (bukan larutan). Larutan yang dibuat dari 1 mol NaCl yang dilarutkan dalam 1.000 g air dinyatakan sebagai larutan 1 molal dan diberi lambang 1 m NaCl. Molalitas didefinisikan dengan persamaan berikut.


   Molalitas juga berguna pada keadaan lain, misalnya karena pelarut merupakan padatan pada suhu kamar dan hanya dapat diukur massanya, bukan volumenya sehingga tidak mungkin dinyatakan dalam bentuk molaritas. Perhatikanlah contoh soal penentuan molalitas berikut.
     Contoh 1.

     Contoh 2. 

2. Fraksi Mol
     Fraksi mol merupakan satuan konsentrasi yang semua komponen larutannya dinyatakan berdasarkan mol. Fraksi mol komponen i, dilambangkan dengan xi adalah jumlah mol komponen i dibagi dengan jumlah mol semua komponen dalam larutan. Fraksi mol j adalah xj dan seterusnya. Jumlah fraksi mol dari semua komponen larutan adalah 1.
Contoh 3.
Contoh 4.

3. Sifat Koligatif Larutan Non Elektrolit
     Meskipun sifat koligatif melibatkan larutan, sifat koligatif tidak bergantung pada interaksi antara molekul pelarut dan zat terlarut, tetapi bergantung pada jumlah zat terlarut yang larut pada suatu larutan. Sifat koligatif terdiri atas penurunan tekanan uap, kenaikan titik didih, penurunan titik beku, dan tekanan osmotik. Apakah perbedaan di antara keempat sifat koligatif tersebut? Perhatikanlah uraian berikut.

a. Penurunan Tekanan Uap
   Penguapan adalah peristiwa yang terjadi ketika partikel-partikel zat cair meninggalkan kelompoknya. Semakin lemah gaya tarik-menarik antarmolekul zat cair, semakin mudah zat cair tersebut menguap. Semakin mudah zat cair menguap, semakin besar pula tekanan uap jenuhnya. Dalam suatu larutan, partikel-partikel zat terlarut menghalangi gerak molekul pelarut untuk berubah dari bentuk cair menjadi bentuk uap sehingga tekanan uap jenuh larutan menjadi lebih rendah dari tekanan uap jenuh larutan murni. Dari eksperimen yang dilakukan Marie Francois Raoult (1878), didapatkan hasil bahwa melarutkan suatu zat terlarut menyebabkan penurunan tekanan uap larutan. Banyaknya penurunan tekanan uap ( ΔP ) terbukti sama dengan hasil kali fraksi mol zat terlarut (xB) dan tekanan uap pelarut murni (ΔPo)

Persamaan tersebut dikenal sebagai Hukum Raoult. 
Contoh 5. 
Contoh 6.

b. Kenaikan Titik Didih
     Adanya zat terlarut pada suatu larutan tidak hanya memengaruhi tekanan uap saja, tetapi juga memengaruhi titik didih dan titik beku. Pada larutan dengan pelarut air, kita dapat memahami hal tersebut dengan mempelajari diagram fase air pada Gambar 1 berikut.
Gambar 1. Diagram Fase Air

  Adanya zat terlarut pada suatu larutan menyebabkan penurunan tekanan uap yang mengakibatkan terjadinya penurunan garis kesetimbangan antarfase sehingga terjadi kenaikan titik didih dan penurunan titik beku. 
    Titik didih zat cair adalah suhu tetap pada saat zat cair mendidih. Pada suhu ini, tekanan uap zat cair sama dengan tekanan udara di sekitarnya. Hal ini menyebabkan terjadinya penguapan di seluruh bagian zat cair. Titik didih zat cair diukur pada tekanan 1 atmosfer. Contohnya, titik didih air 100 °C, artinya pada tekanan udara 1 atm air mendidih pada suhu 100 °C. 
    Dari hasil eksperimen yang dilakukan pada penentuan titik didih larutan, ternyata titik didih larutan selalu lebih tinggi dari titik didih pelarut murninya. Hal ini disebabkan adanya partikel-partikel zat terlarut dalam suatu larutan menghalangi peristiwa penguapan partikel-partikel pelarut. Oleh karena itu, penguapan partikel-partikel pelarut membutuhkan energi yang lebih besar. Perbedaan titik didih larutan dengan titik didih pelarut murni disebut kenaikan titik didih yang dinyatakan sebagai ΔTb (b berasal dari kata boil). 
   Titik didih suatu larutan lebih tinggi atau lebih rendah daripada titik didih pelarut, bergantung pada kemudahan zat terlarut itu menguap dibandingkan dengan pelarutnya. Jika zat terlarut tersebut tidak mudah menguap, misalnya larutan gula, larutan tersebut mendidih pada suhu yang lebih tinggi daripada titik didih pelarut air. Sebaliknya, jika zat terlarut itu mudah menguap misalnya etanol, larutan akan mendidih pada suhu di bawah titik didih air. Hukum sifat koligatif dapat diterapkan dalam meramalkan titik didih larutan yang zat terlarutnya bukan elektrolit dan tidak mudah menguap. Telah ditentukan secara eksperimen bahwa 1,00 mol (6,02 × 1023 molekul) zat apa saja yang bukan elektrolit dan tidak mudah menguap yang dilarutkan dalam (1.000 g) air akan menaikkan titik didih kira-kira 0,51 °C. Perubahan pelarut murni ke larutan, yakni ΔTb, berbanding lurus dengan molalitas (m) dari larutan tersebut:
Kb adalah tetapan kenaikan titik molal dari pelarut (°C/m). Kenaikan titik didih (ΔTb) adalah titik didih larutan (Tb) dikurangi titik didih pelarut murni (Tb°).

Contoh 7. 

Contoh 8.

c. Penurunan Titik Beku
  Seperti halnya pada kenaikan titik didih, adanya zat terlarut dalam larutan akan mengakibatkan titik beku larutan lebih kecil daripada titik beku pelarutnya. Penurunan titik beku, ΔTf (f berasal dari kata freeze) berbanding lurus dengan molalitas (m) larutan: 
dengan Kf adalah tetapan penurunan titik beku molal pelarut (°C/m). Penurunan titik beku (Tf) adalah titik beku pelarut murni (Tf°) dikurangi titik beku larutan (Tf).
Berikut ini adalah beberapa harga tetapan penurunan titik beku (Kf) dari beberapa pelarut.
      Contoh 9. 
    Contoh 10.

d. Tekanan Osmosis
    Osmosis adalah merembesnya partikel-partikel pelarut dari larutan yang lebih encer ke larutan yang lebih pekat melalui suatu membran semipermeabel. Membran semipermiabel hanya melewatkan molekul zat tertentu sementara zat yang lainnya tertahan. 
Gambar 2. Proses Osmosis dengan Membran Semipermeabel

Gambar 2 menggambarkan peristiwa osmosis. Pada Gambar 2a, diperlihatkan keadaan awal, kemudian setelah beberapa saat, tinggi air pada tabung naik (Gambar 2b) hingga kesetimbangan tercapai. Tekanan balik dibutuhkan untuk mencegah terjadinya proses osmosis (Gambar 2c). Jumlah tekanan balik yang dibutuhkan merupakan tekanan osmotik larutan.
    Dua larutan yang memiliki tekanan osmotik sama disebut larutan isotonik. Jika salah satu larutan memiliki tekanan osmotik lebih tinggi dari larutan yang lainnya, larutan tersebut dinamakan hipertonik. Adapun jika larutan memiliki tekanan osmotik lebih rendah dari larutan yang lainnya, larutan tersebut dinamakan hipotonik. Tekanan osmotik termasuk dalam sifat-sifat koligatif karena besarnya hanya bergantung pada jumlah partikel zat terlarut persatuan volume larutan. 
   Tekanan osmotik tidak tergantung pada jenis zat terlarut. Persamaan berikut (dikenal sebagai Persamaan Van’t Hoff) digunakan untuk menghitung tekanan osmotik dari larutan encer. 
     Contoh 11. 

    Contoh 12.
   Jika tekanan mekanis pada suatu larutan melebihi tekanan osmotik, pelarut murni akan terperas ke luar dari suatu larutan lewat suatu membran semipermeabel (Gambar 3). Proses ini disebut osmosis terbalik (reverse osmosis) dan merupakan suatu cara untuk memulihkan pelarut murni dari dalam suatu larutan. Contoh penerapan osmosis balik adalah pemulihan air murni dari limbah industri dan menawarkan air laut (desalinasi). 
Gambar 3. Osmosis terbalik

   Proses osmosis sangat penting bagi tanaman dan hewan karena dengan proses osmosis, air dibagikan ke semua sel organisme hidup. Dinding sel merupakan membran semipermeabel, membran sel hidup ini juga dapat ditembus oleh zat-zat terlarut tertentu sehingga bahan makanan dan produk buangan dipertukarkan lewat dinding sel ini. Permeabilitas dinding sel terhadap zat terlarut seringkali bersifat memilih-milih dan sampai batas tertentu tidak bergantung pada ukuran partikel zat terlarut dan konsentrasi mereka. Misalnya, ion magnesium yang terhidrasi praktis tidak menembus dinding saluran pencernaan, sedangkan molekul glukosa dapat melewati dinding sel.


Sifat Koligatif Larutan Elektrolit
   Hubungan sifat koligatif larutan elektrolit dan konsentrasi larutan dirumuskan oleh Van’t Hoff, yaitu dengan mengalikan rumus yang ada dengan bilangan faktor Van’t Hoff yang merupakan faktor penambahan jumlah partikel dalam larutan elektrolit.
1. Penurunan Tekanan Uap
     Contoh 13. 

2. Kenaikan Titik Didih dan Penurunan Titik Beku

     Contoh 14.

3. Tekanan Osmosis


     Contoh 15. 




PETA KONSEP



























Senin, 29 Juli 2019

Soal Tata Nama Senyawa Alkana

TATA NAMA SENYAWA ALKANA

Alkana merupakan senyawa hidrokarbon.  Senyawa karbon yang paling sederhana adalah hidrokarbon karena hanya terdiri dari dua unsur, yaitu karbon (C) dan hidrogen (H). Meskipun demikian jumlah senyawa yang dihasilkan dari kedua unsur ini sangat banyak. Alkana termasuk dalam senyawa hidrokarbon alifatik jenuh, yaitu hidrokarbon dengan rantai terbuka dan semua ikatan karbonnya merupakan ikatan tunggal. Senyawa alkana mempunyai rumus (James E. Brady):

Nama-nama sepuluh alkana dengan jumlah atom karbon 1 sampai 10 terdapat pada tabel 1. Hal ini merupakan dasar nama-nama seluruh senyawa organik.
Tabel 1. Jumlah molekul atom C, Rumus Molekul serta Nama Alkana

Jumlah atom C
Rumus Molekul
Nama
1
CH4
Metana
2
C2H6
Etana
3
C3H8
Propana
4
C4H10
Butana
5
C5H12
Pentana
6
C6H14
Heksana
7
C7H16
Heptana
8
C8H18
Oktana
9
C9H20
Nonana
10
C10H22
Dekana

Gugus Alkil
Gugus alkil adalah alkana yang telah kehilangan satu atom H. Gugus alkil ini dapat dituliskan dengan menggunakan rumus:
Dengan menggantikan satu atom H, maka namanya juga akan berubah dari metana menjadi metil. Berikut ini beberapa gugus alkil yang biasa digunakan
Tabel 2. Gugus Alkil
Rumus Molekul
Nama Alkil
CH3
Metil
C2H5
Etil
C3H7
Propil
C4H9
Butil atau amil
C5H11
Pentil
C6H13
Heksil
C7H15
Heptil
C8H17
Oktil
C9H19
Nonil
C10H21
Dekil
 Gugus propil ada dua jenis, yaitu:








Sedangkan gugus butil ada empat jenis, yaitu:




















Tata Nama Alkana 
Dalam pemberian nama alkana ini akan sangat sulit jika hanya menggunakan tata nama alkana biasa (metana s.d. dekana, untuk C1–C10). Hal ini disebabkan adanya isomer-isomer dalam alkana, sehingga perlu adanya nama-nama khusus. Misalnya, awalan normal digunakan untuk rantai lurus, sedangkan awalan iso untuk isomer yang mempunyai satu cabang CH3 yang terikat pada atom karbon nomor dua. Padahal sangat sulit bagi kita untuk memberikan nama pada rantai karbon yang mempunyai banyak sekali isomer. Oleh karena itu, perhimpunan kimiawan internasional pada pertemuan di Jenewa pada tahun 1892 telah merumuskan aturan penamaan senyawa kimia. Tata nama yang mereka rumuskan itu terkenal dengan tata nama IUPAC (International Union of Pure and Applied Chemistry). Nama yang diturunkan dengan aturan ini disebut nama sistematik atau nama IUPAC, sedangkan nama yang sudah biasa digunakan sebelum tata nama IUPAC tetap digunakan dan disebut dengan nama biasa atau nama trivial. 
Aturan IUPAC untuk penamaan alkana bercabang sebagai berikut.
  • Nama alkana bercabang terdiri dari dua bagian, yaitu:
          - Bagian pertama, di bagian depan, yaitu nama cabang (cabang-cabang). 
          - Bagian kedua, di bagian belakang, yaitu nama rantai induk  
         

  • Rantai induk adalah rantai terpanjang dalam molekul. Bila ter-dapat dua atau lebih rantai terpanjang, maka harus dipilih yang mempunyai cabang terbanyak. Induk diberi nama alkana, tergantung pada panjang rantai. 

  • Cabang diberi nama alkil, yaitu nama alkana yang sesuai dengan mengganti akhiran ana menjadi il. Gugus alkil mempunyai rumus umum CnH2n + 1 dan dinyatakan dengan lambang R (lihat tentang alkil).
  • Posisi cabang dinyatakan dengan awalan angka. Untuk itu rantai induk perlu dinomori. Penomoran dimulai dari salah satu ujung rantai induk sedemikian hingga posisi cabang mendapat nomor terkecil. Contoh:

  • Jika terdapat dua atau lebih cabang yang sama, hal ini dinyatakan dengan awalan di, tri, tetra, penta, dan seterusnya pada nama cabang.
  • Cabang-cabang yang berbeda disusun sesuai urutan abjad dari nama cabang itu. Misalnya 
        • Etil ditulis terlebih dahulu daripada metil. 
        • Isopropil ditulis terlebih dahulu daripada metil. 
Berdasarkan aturan tersebut, penamaan alkana dapat dilakukan dengan langkah-langkah sebagai berikut. 
1) Memilih rantai induk, yaitu rantai terpanjang yang mempunyai cabang terbanyak. 
2) Memberi penomoran dimulai dari salah satu ujung, sehingga cabang mendapat nomor terkecil. 
3) Menuliskan nama dimulai dengan nama cabang yang disusun menurut abjad, kemudian diakhiri dengan nama rantai induk. Posisi cabang dinyatakan dengan awalan angka. Antara angka dengan angka dipisahkan dengan tanda koma (,), sedangkan antara angka dengan huruf dipisahkan tanda jeda (–). Berikut ini contoh pemberian nama pada alkana.

Untuk lebih jelasnya kita akan melihat video berikut:



Isomerisasi pada Alkana 
Sebagaimana telah kita pelajari di depan bahwa pada senyawa hidrokarbon dikenal istilah isomer. Isomer yang terjadi pada alkana adalah isomer rangka. 
Sebagai contoh C5H12 mempunyai isomer:


Sifat Alkana
  • Semua hidrokarbon merupakan senyawa nonpolar sehingga tidak larut dalam air. Jika suatu hidrokarbon bercampur dengan air, maka lapisan hidrokarbon selalu di atas sebab massa jenisnya lebih kecil daripada Pelarut yang baik untuk hidrokarbon adalah pelarut nonpolar, seperti CCl4 atau eter. 
  •  Makin banyak atom C, titik didih makin tinggi. Untuk hidrokarbon yang  berisomer (jumlah atom C sama banyak), titik didih makin tinggi apabila rantai C makin panjang (bercabang sedikit). 
  • Pada suhu dan tekanan biasa, empat alkana yang pertama (CH4 sampai C4H10) berwujud gas. Pentana (C5H12) sampai heptadekana (C17H36) berwujud cair, sedangkan oktadekana (C18H38) dan seterusnya berwujud padat. 4) Jika direaksikan dengan unsur-unsur halogen (F2, Cl2, Br2, dan I2), maka atom-atom H pada alkana mudah mengalami substitusi (penukaran) oleh atom-atom halogen. 


  • Alkana dapat mengalami oksidasi dengan gas oksigen, dan reaksi pembakaran ini selalu menghasilkan energi. Itulah sebabnya alkana digunakan sebagai bahan bakar. Secara rata-rata, oksidasi 1 gram alkana menghasilkan energi sebesar 50.000 joule. 


Daftar Pustaka
Budi Utami, dkk. 2009.   Kimia 1 : Untuk SMA/MA Kelas X.  Jakarta : Pusat Perbukuan, Departemen Pendidikan Nasional.
Unggul Sudarmo. 2004. Kimia untuk SMA Kelas X. Jakarta: Erlangga




REAKSI UJI NYALA UNSUR GOLONGAN IA DAN IIA

Unsur-unsur golongan alkali dan alkali tanah dapat dibedakan dari warna nyala yang dihasilkannya. Bagaimanakah warna nyala unsur-unsur terse...